
A Name Server Database

Dllvid W. Riggle

Computer Science Division
Department of Electrical En&ineering and Computer Sciences

University of Calitornia
Berkeley, Calirornia 94720

May 1, 1984

ABSTRACT

A name !erver maps names to network addresses. It needs to
maintain only a small amount of data to accomplish this feat. A special
purpose database of simple design can provide much better performance
than a general purpose database. This paper describes such an
implementation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAY 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
A Name Server Database

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A name !erver maps names to network addresses. It needs to maintain only a small amount of data to
accomplish this feat. A special purpose database of simple design can provide much better performance
than a general purpose database. This paper describes such an implementation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Name Server Database

David W. Riggle

Computer Science Division
Department ol Electrical Engineering and Computer Sciences

University ol California
Berkeley, California 04720

May 1, 1984

1. Introductiont

This paper describes the design and implementation of a name server d:;.tabase

from conception to completion. Relevant topics such as name server design and

function are discussed in minor detail when appropriate.

2. The Purpose of a Name Server

A name server simplifies the task of naming objects !uch as mailbc;:cg and

machine addresses in a distributed environment. It must provide a consistent and

unique name space in which objects are defined. A large network such as the

ARP Anet has many hundreds of host m3Chines, tens or hundreds of thcusands of

users, and several esoteric protocols and data format!'!. Providing a standard naming

convention in this complicated and changeable environment is one major g:1al of a

name server.

Just as important, however, is the need to distribute the work of modifying and

maintaining the database among the appropriate administrative units. At present, the

ARPA Network Information Center at SRI is solely responsible for updating and

distributing copies of a global table of the hosts in the ARPA Internet. The size of

this table and especially the frequency of updates are near the limit of manageability

(Mock2 1983).

The SRI-NIC host table does not contain names of mailboxes or of other objects

smaller than single machines. The handling of such vast amounts of data necessitates

abandoning the centralized host table in favor of a distributed database in which local

administrators have complete control over their part of the environment. Changes

can more quickly and easily be made to these small, local subsets of the name space.

Processes could even "rendezvous" over local networks or post messages on the name

server in (perhaps) real time. It is the name server's job to provide access to the

di~buted data in the name space in such a way that users need never know they are

t ThiB work wu partl1 llpOII!IOred b1 the DefenR Adnnc:ed Reuea.rch Projecte A&ency (DoD),

ARPA Order No. 4031, monitored b1 the Nnal Electronica S1stema Comma.nd under Contract No.

N00030-C-0235. The views a.nd conclusions contained in this document are those of the author a.nd should

not be interpreted u representiJll official policies, either exprellled or implied, or the Deren.se Adva.nced

Reeearch Projecte A&enq or of the US Government.

- 2-

transcending administrative and physical boundaries.

The concept of the Internet Domain Name Space and the inspiration for the

Berkeley Name Server Project (BINDS) come from P. Mockapetris d ol. at USC-lSI

(Mockl, Mock2, Mock3, Mock4 1983]. Their design is likely to become a standard on

the ARPA and MIL NET networks. They envision the Domain Name Space a! a tree

(see Fig. 1). Each node and leaf on the tree contain information called Resource

Records (RRs). Nodes could represent hosts or mailboxes, for example, and resource

records at those locations could be network addresses, phone numbers, mailing lists, or

anything else. In the Berkeley implementation, which also supports user updates,

"finger" information maintained by individual users could easily be stored in the name

space.

Each node in the Domain Name Space has a unique name given by its path from

the root or "null" domain name in the tree. For example, one name might be

"ernie.berkeley.arpa." The name server's job, in essence, is to take any name in the

Domain Name Space and return whatever information is associated with it. How it

accomplishes this selfless task in the face of political and geophysical obstacles is more

properly left to another paper (Zhou 1984].

Sample Domain Name Space

ATICI'!

Figure 1.

3. The lSI Domain Name Space

I will now disclW! peculiarities of the lSI name space and how they relate to the

implementation of an individual name server and its private database.

- 3-

The most striking feature of the lSI design is the ability to delegate authc:~ty to

arbitrarily small portions of the Domain Name Space. In the extreme, each machine

could be responsible for its own information and no other. Most likely a single name

server would have detailed knowledge of a few dozen or so machines and a few

thousand users. By database standards, individual name servers have very little

information to store. For this reason and for efficiency, a name server's database

could reside in core.

A name server may be responsible for more than one administrative partition of

the name space (called a zone of authority). Its database therefore must be able to

provide logical partitioning of the data into separately managed tree structures. No

sharing of data between these zones is encouraged [Mock3 1983]. For refreshing and

caching purposes, zones may be distributed wholly to other name servers upon

request. One zone, where cached information from various sources is stored, is

designated the "cache tree."

The database is initialized by reading domain names and their associated

resource records from a "master file." Updates to the database are made by hand to

this "master file." The proposed design is for a read only database much like a

telephone book. No user updates are allowed. Crash recovery is simple enough: the

database is reloaded from the "master file" when the system comes back up.

4. Definition of a Resource Record and Typical Queries

A Resource Record (RR) is the basic element of data storage in the lSI Domain

Name Space. Network addresses, mailboxes, and so on, are all stored in RRs. There

are five fields in an RR. They are Domain Name, TTL, Cllm, Type, and Data. The

Class and Type fields are small integers describing the Internet class (e.g., CSnet or

ARPAnet) and the type of the resource record (e.g. Mailbox, Name Server, and so on).

The TTL (Time To Live) field is a time-out counter. Domain Names and Data are

character strings of up to a maximum length (256 bytes).t A typical RR might be as

follows:

Domain Name TTL CJ.asa Type Data

sailors.berkeley .arpa 0 cs NS 20.0.0.4

Typical queries are of three kinds. Standard queries specify the name, class, and

type of the desired RR. Either or both of class and type may be wildcards. The

wildcard ("*") matches all patterns. Several RR.s may be returned from the database

as a result of a single query. Different RR.s may even have the same name, class, and

type fields but different data.

t The symbolic constants uaed in this paper to repreeent inf.e!er constants stored in the databaae do

not necessarily correspond to real cl&~~~~e~~ and types. For an accurate description or the facilities

provided by the Berkeley Name Server and for more information on timeouts and "Data" .ee (Zhou

84) and (Painter 84).

- 4-

Inverse queries are the sec-ond major kind. Given the data and possibly a

restricting class and/or type, the database must return all RRs with that data which

meet the constraints on class and type. Inverse queries are useful for finding machine

names from addresses and could even be used to retrieve user names from office

numbers, for example.

Completion queries are the third kind. A partial name may be given to the name

server in a query. By climbing up the Domain Name Space Tree and adding suffixes

to the partial name, a full path name may be constructed. The actual name

completion algorithm requires rather detailed knowledge of the Domain Name Space

Tree and the names actually stored in the database, and it therefore may be most

appropriate for the name server to administer the searching of the database during

completion queries.

5. The Database Implementation Proposed by lSI

The recommended database implementation vouch.sa!ed by lSI is a tree

structured design corresponding to the Domain Name Space Tree. Separate trees are

constructed for each zone of authority, including the cache tree. RRs are attached to

nodes and leaves in the trees. The lSI designers suggest tree traversal as the name

look-up procedure and hierarchical name storage so that full path names need not be

stored in each node (Mock3 1983].

These zone-trees must be built dynamically since zones exist merely to delimit

admip.istrative units and can change with time. A standard query would be answered

by tree searching the appropriate zone-tree in the database. This zone-tree is chosen

because its root is closest to the desired name in the Domain Name Space. A linear

search of all zone-tree roots determines which zone is the appropriate one to look into.

At each node of the tree there are pointers to descendant nodes representing subtrees

in the name space. Each descendant's name must be compared to the remaining parts

of the hierarchical name we are looking for. If there are many children per node, as is

most likely (consider the number of users per machine or the number of machines per

university), we could spend a lot of time comparing names before we found the one we

were looking for.

After the desired domain name has been found by traversing the zone-tree, the

node corresponding to that name must be searched for RRs matching the Class and

Type fields in the query. No mention is made in (Mock3 1983] of the storage structure

or search mechanism used within nodes, but the simplest would be a linked list of

resource records containing Class, Type, TTL, and Data fields (of maximum length)

for each node. These records could be easily re-used if they were the same size, but

allocating the maximum size for each record is rather wasteful of space, especially

when most data is about as long as "20.0.0.4." Also, a linear search of all the RRs

within a node to find the one you want is not very time efficient, but that is about all

you can do with a simple linked list.

Although the lSI database is read only in the sense that no update queries are

allowed- all changes must be made by hand to the "master file" which is periodically

reloaded into the database- it is not truly static. Some form of memory management

must be used to recover old space when whole zones are reloaded. No provision for

incremental zone refreshes is included in the lSI description of the name server.

- 5-

Nevertheless, incremental updates are a central issue in the Berkeley name server

project (see (Zhou 1984} and (Painter 1984}).

No crash recovery mechanism is required in the lSI database since a permanent

copy of the data can always be found in the "master file."

The lSI design proposes concurrent access to the database so that the

maintenance operatiom (refreshing zones) do not interfere with normal query

processing. However, the overhead of concurrency control on some systems (namely

UNIXt) could significantly slow down the database operations during normal queries.

I will discuss this problem a little later. Another drawback of the lSI database

implementation is probably its main virtue: the tree structured encoding of the name

space. Interesting data such as user names will invariably be at the bottom of the tree,

requiring a lengthy search. Ir the name space is broken up into many zones to try and

reduce the height of the many search trees, the result is not necessarily better since

the root name of each zone must be compared to the name being searched for at the

beginning of the retrieval to find the appropriate zone in which to search for that

name.

To some extent, then, performance depends on the administrative boundaries of

the name space: how many zones there are, how many nodes per zone, and how many

children per node.

8. 'tdeu on a Name Server Database

Despite the space cost of storing the full path name with each node in the

Domain Name Space Tree, doing so essentially turm the hierarchical tree structure

into a flat name space. Nodes can then be found in a single look-up (i.e. by hashing)

instead of being found by a longer, although more natural, tree search. Within each

node a considerable amount of data sharing can be accomplished with only a little

effort. Every RR will have the same Domain Name field and can share the same name

storage. Those of the same class can share that datum as well. Those of the same

class and type would share all significant data. If many similar RRs (such as members

of a mailing list) exist under a domain name, the storage saving! due to shared data

could be significant compared to a scheme that stored the fields of each RR

independently.

Space requirements, one of the motivating reasom for breaking up the SRI-NIC

host table in the first place (Moek2 1983), should not be forgotten in the database

implementation. Allocating resource records of the maximum sire to hold data which

are only a few bytes long is a luxury that only a few computers and even rewer

personal workstatiom can afford. Complete re-use of free storage with as little

overhead as possible would be very desirable in a system which is supposed to stay up

for a very long time and handle many updates or refreshes. Running out of cere

because of poor memory management or a placebo free() routine i.! not acceptable.

lSI proposes that the database should be able to handle concurrent access and

modification (for refreshes). A system of two loeb is suggested to implement exclusive

and shared access. Unfortunately, in 4.2. BSD UNIX there i.! no shared data memory.

t UNIX is a trademark or Bell Laboratories.

- 6-

A database program providing concurrent access and modification would either have

to be entirely disk based, or else it would have to act like a "database server." In a

disk based system, shared file access can be used as a substitute for shared memory

access. Given shared aomething, concurrency can be achieved with semaphore locks

on various portioru~ of the database, allowing different database processes to read and

write simultaneously. The database would become just a file, and many database

programs, started up by the name server to handle individual queries, would use this

file at the same time.

\Vith a "database server," queries would be sent as messages to a single database

program, which would have to handle its own multi-programming, by perhaps forking

and piping, and responses would be sent back as messages. The only advantages to

this scheme are that the complexity of the name server is reduced (each one does not

need a database program) and the database need not be on disk. However, the

message overhead needed to implement concurrency is a terrible drain on

performance. It seems we cannot win either way, and the immeD.!Ie overhead puts

concurrent access out of the question, in my opinion. A name server using a database

without concurrent access would have to &D.!Iwer all queries and maintenance

operatioru~ serially.

Along the same lines, it is apparent that a name server cannot afford to use a

genetal purpose database system for retrieving queries. First of all, it would be

overkill. The name server requires only a few kinds of retrieval and update

operatioD.!I. Mechanisms for joiD.!I, selects, and even elaborate crash recovery are

superfluous. Secondly, large database systems tend to be huge, heavily CPU bound,

and terribly slow (try running INGRES in Berkeley UNIX). The trend toward smaller

workstatioD.!I in a distributed environment precludes the use of these dinosaurs.

Especially with respect to the CPU, distributed programs need to have a "social

conscience." That is, they must be made a little less ambitious and a little more

economical. CoD.!Iidering the network and IPC delays among distributed systems,

database access times are probably not all that critical. Frugal CPU usage, however,

will always be critical.

7. Implementation of the Berkeley Name Server Database

Two of my goals for the database were simplicity and speed. Almost the first

design decision I made was to keep the database entirely in core. Luckily the amount

of data needing to be stored is small enough to make an in-core database feasible (see

section 13, "Overall Performance," for some examples). If page faults in a virtual

memory environment are considered normal disk accesses, a low level disk based

system with caching might conceivably locate data with fewer disk accesses than my

scheme, but the CPU requirements and the added complexity would not be worth the

questionable time savings.

An in-core (or virtual-core) database which is expected to run for a very long

time with many updates and deletions needs to have an efficient way to reclaim

storage. The pitfalls of memory fragmentation are a very real danger since data can

be quite variable in length and may be freed in any order. Allocating maximum-size

buffers is too wasteful of space, and memory compaction schemes to coalesce empty

regions are too expensive. The solution I chose is to have only one size of data buffer

- 7-

in the whole database. Everythiag mU!It fit into these buffers, making complete re-U!Ie

of storage very easy, i/o and memory operations uniform, and debugging easier. Data

that is longer than one full buffer can be stored in several buffers which are then

linked together. A hierarchical structure can be built from the data buffers by means

of two pointers provided in each.

Buffers are allocated in blocks of a few hundred or thoU!Iand buffers. 'Within

these blocks the individual buffers are referenced like records in an array. Blocks are

dynamically allocated and linked together as the need for more buffers arises. Unused

buffers are garbage collected periodically. Garbage collection is particularly easy with

this scheme because the buffers can be readily found in memory, and they are all

identical.

In summary, this scheme of single sized buffers provides simple storage

management, 100% re-use of space, and arbitrarily long data strings. The cost of this

flexibility is a small amount of internal fragmentation (how much depends on the

average length of the data). If the buffer size is longer than most data, then memory

is being wasted. Also, the pointer overhead per buffer is significant. Currently 23 out

of 32 bytes of a buffer are used for data. In other words, 28% of a buffer's space is

o'Ver~ead. However, all but one byte of the overhead is used in representing the

hierarchical structure of a resource record and achieving data sharing. In tills light,

the space overhead does not seem too outlandish.

Another problem arises if a linked list is made from buffers widely separated in

memory. Traversing this list could result in many page faults. Fortun~tely, this

problem should not occur very often. Initially, buffers are allocated sequentially so

that lists built from fresh buffers will be close together in memory. AB discUBsed under

Garbage Collection, buffers are grouped on the free list as closely as they can be in

memory without resorting to compaction. Therefore, lists built from used buffers will

also tend to be very close together.

Alternative schemes besides my one-size-fits-all data buffers are possible. Any

variable sized buffer implementation would have to face external fragmentation and

either deal with memory compaction or suffer a very sparsely populated address space.

Many page faults are likely in the second ease. AB noted before, a maximum sized

buffer scheme is flagrantly wasteful of space, although such a scheme would not have

to worry about extra pointer traversals to retrieve data that is longer than one of my

buffers.

7.1. The Huh Table and Hierarchical Bufl'er Structure

I use a hash table to map full domain names (a fiat name space) into a

hierarchical class and type structure built from the single sized data buffers. Hash

table collisions are resolved by chaining. Associated with each domain name is a zone

name and a list of classes. Each class has a list of types. Each type has a list of data.

In this way storage is shared by many RRs. For example, if two RRs have the same

name, class, and type fields, only the TTL and data fields of the second RR need to be

stored (see Fig. 2).

hash table

I

I
y

- 8-

Figure 2.

Both the domain name and the data fields can be arbitrarily long. For

efficiency's sake and because there was no need for more (a 23 digit integer is a v.~ru

large "small integer"), zone names, classes, types, and TTLs are limited in size to cne

data buffer. A standard query would be alll!wered as follows: the domain name is

h~hed and the collision chain examined until a match for both domain name and zone

is found; the desired class is found by a linear search through the class list. From that

class the search continues down its type list for the desired type. After the type is

located, the data fields below it are returned to the name server.

The interface between the name server and the database is really quite simple.

The name server specifies the zone, name, class, and type fields, and the database

returllll the RRs found in an array of structures. Several of the database primitives

used by the name server are given below:

- 9-

/* returns a count of the RRs found. Zone, class, and type may be "*" *I

getdata(zone, name, class, type, result)

char zoneD, nameD, classD, typeD;
struct RR resultD;

/* adds new data to the database. It is an error if it already exists • I

adddata(zone, name, class, type, ttl, data)
char zoneD, nameD, classD, typeD, ttlD, dataD;

I • changes olddata to new data in one operation. It is an error if olddata

does not exist or newdata already exists • I

changedata(zone, name, class, type, olddata, newttl, newdata)

char zoneD, nameD, classD, typeD, olddataD, newttiD, newda.taO;

/* delete data. It is an error if the data does not exist • I

deletedata(zone, name, class, type, data)
char zoneD, nameD, classQ, typeD, dataQ;

/*the name server's view of a resource record. DATASIZE = 23, DATAMAX = 256 *I

struct RR {

}

char zone(DATASIZE);
char name[DATAMAX];
char class(DATASIZE);
char type(DATASIZE);
char tti[DATASIZE];
char data[DATAMAX];

1. •. 2. Parallel Disk Veraion of the Database

While an in-core database is simpler to program and probably runs faster than a

disk based system where no data are cached in memory, it has one major drawback

for a name server which allows dynamic updates to the database: everything is

volatile. Modifications not saved to disk will be lost when the system crashes.

Updates could be written to the "master file" in human readable form, but that would

be inefficient. The whole file might have to be read and parsed to make just one

deletion.

Instead I decided to maintain a parallel version of the database on disk. It

closely resembles the internal structure of my in-core database. Part of the disk file is

a picture of the hash table, and the rest is divided into fixed sized buffers. Each disk

buffer has a number which corresponds to a data buffer's addre:!S in memory. Every

time a data buffer is modified, its disk buffer is similarly modified. Fflush() is called

- 10-

before the modifying routine returns, but no more assurance of tl:.e data actually being

written to disk is provided.

Since updates are always performed by switching a single pointer from the old

data buffers to the new data buffers, the database should be in a consistent state when

the system comes back up after a crash. If not, it is up to the consistency checker to

reconstruct the database. Providing more crash recovery mechanisms - such as

forcing updates all the way to disk, writing in parallel to two disk drives, and logging

changes on tape - would reduce the chance of losing information, but the performance

penalty would be astronomical (see INGRES again). Elaborate crash recovery is

provided in commercial databases, but for our purposes, a small measure of crash

worthiness should be sufficient. Data stored in a name server should not be so critical

that no update can ever be lost.

The disk file is used to boot the database when it first comes up. For

initializations I have a load program to read the "master file" and insert the RRs into

the database.

The cost of making updates to the database is greater than the cost of making

queries. No disk access (other than page faulting) is needed to answer a query. In

addition to modifying the disk buffers when an update occurs, the inverse query table

must be modified if new data has been added. Nevertheless, updates are fast enough

to encourage use of the name server as a rendezvous point for cooperating processes.

Such use would require frequent updates to the database.

7 .3. Performance and Analy1ia

For the average query, the only computations which have to be performed are

the hash value calculation and a few string comparisons. Following pointers which

cause page faults will no doubt be the greatest source of delay. The hash table

collision chains are a large contributor of page faults. Since the names which collide

are not added to the database in any particular order, moving along the collision chain

will be like jumping randomly from one part of memory to another. Minimizing the

hash table load factor is therefore very important.

For a given name in the database, most of the buffers connected to it are

allocated at the same time. Nevertheless, if RRs for the same domain name are added

to the database at widely separated intervals, the hierarchical structure built will be

all over memory, and many page faults are possible for a single lookup. Hopefully, if

su.ch a name happens to be in a popular query, the operating system will be able to

k~p"the necessary pages in memory to eliminate excessive page faulting. In any case,

do not despair; for there is a way or completely rejuvenating the database by re­

clustering the data buffers to produce a minimal number of page faults (see below).

It is interesting to note that performance is independent of the size of zones, the

number of zones, and the administrative partitioning of the Domain Name Space.

7 .4. Databue Maintenance

Several configuration constants affect the performance of the database. The most

important is the hash table size. It is currently the prime number 1129. It should be

adjusted to keep the load factor low (the hash table size should be comparable to the

number of distinct domain names in the database). The nex-t most important constant

- 11-

is the number of data bytes per. bu1Ier. It is currently 23. This constant should be

comparable to the average name and data length. Changing either of these constants

would require dumping the database to an intermediate file (currently the human

readable "master file"). The changes could then be made to the program, the

database recompiled, and the data reloaded.

To facilitate such modifications, two routines are provided. They are

"dumpdb()" and "loaddb()." The first creates a "master file" for each rone in the

database. The second takes a number of "master files" and loads each one into its

appropriate rone. If the database is to be reloaded from scratch, it is necessary to

r.ero the database's disk file before reloading it (done with "cp /dev/null disk_file" in

UNIX).

Even if no modification is made to the database program, dumping anG reloading

the database have the interesting side effect of grouping all RRs of the same name

together and hence clustering them as close as possible in memory, reducing page

faults. I do not anticipate the database ever getting "out of tune" as time goes by,

but the dump and reload routines seem fast enough to be run as part of an

initialization script if it were thought necessary.

8. Garbage Collection

A major goal of the Berkeley Name Server Project was to provide updating

facilities to the name server database. Deleting and modifying resource records

necessarily leaves some data buJJers unused and unreachable. How to identify and

collect these data buffers so they can be re-used is a problem of no small importance.

We would like the method to incur as little overhead as possible. Because of the

unique structure of this database, the job is particularly suited to a garbage collector.

But first, before I describe my implementation, I will give a brief description of the

various ways by which it would be possible to collect and re-use memory in this

database.

8.1. Explicitly Inserting Bufl'en on The Free List

The simplest way to re-use data buJJers in the he~•P is explicitly to link them

together on a free list at the time of deletion. This housekeeping takes a 11mall

amount of time during each update. Explicitly recovering discarded buffers is

undoubtedly the least costly way of re-using space since no time needs to be spent to

locate the unused buJJers. There are some major disadvantages, however. Since the

free list is a unique structure (i.e. it could not be recreated from available information

if t~ system were to crash), it must be stored somehow in the parallel disk version of

the database. Updates to the free list (buJJer allocation or de-allocation) would have

to be written to the disk. What is worse, an untimely crash could leave some buJJers

in limbo (neither on the free list nor in use), and they would be lost forever.

Another disadvantage is that buJJers are inserted on the free list in essentially

random order. A linked list built from buJJers on the free list could be scattered all

over memory. A traversal of this list could be very slow because of the many page

faults encountered. Sorting the free list would be a costly exercise.

Thus, the simplest scheme is not the safest nor the best, and it requires too much

disk i/o.

- 12-

8.2. Reference Counting

The next scheme is reference counting. Each data buffer would keep a count of

the number of pointers pointing to it. When the count reached zero, the buffer would

consider itself free. ~ in the first scheme, the overhead is spread out over every

deletion and insertion. The obvious trouble with simple reference counting is its

inability to detect cycles of unused buffers. Although my database is not supposed to

have any cycles in it, who knows what the structure might look like after a bizarre

crash! If the system cra5hed as the reference counts were being decremented, some of

the data buffers could be lost forever. This scheme also suffers from the liability of

recovering the buffers in a random order. Also, the reference counts cannot be

recreated from other available information, and so disk i/o is necessary for every

update to change the reference counts stored on disk.

8.3. Garbage Collecting

By far the best solution for recovering unused space under our circumstances is

to use a garbage collector. Deleted buffers are just forgotten, and atomic updates are

accomplished by allocating new space and then simply switching pointers. After a

sizable number of buffers has been deleted, it is worth our while to collect them. Since

the database resides in core, the smaller the working set required in memory the

better. No housekeeping overhead is incurred during routine updates and deletions.

Every once in a while, however, the database must stop its work completely and run

the garbage collector. It is this periodic drain on performance which antagonists

decry. Nevertheless, I claim the price is very small and the best bargain we have seen

so far.

Since the free list can be rebuilt by the garbage collector from the available

information (we know which buffers are reachable from the hash table and which are

not), no information about the free list needs to be written out to disk. Free buffers

can be linked together and managed in the memory alone - a remarkable result.

What is more, after the sweep operation of the garbage collector, the free buffers are

in sorted order. A string of re-allocated buffers will be as close together in memory as

possible without running an expensive compaction algorithm. If the system were to

cra5h at any time, the garbage collector could reconstruct the free list easily enough.

No data buffers can be permanently lost.

If I were to implement a memory compaction scheme in the database during

garbage collection, it would be necessary to update to disk all the data buffers moved

around in memory. This extra overhead would reduce to a snail's pace the current

lightning speed of the garbage collector. I opt for simplicity and speed as usual .

...: ...
8.4:"' The Consistency Checker

By incorporating a few checks into the mark phase of the garbage collector, we

get a very useful consistency checker almost for free. The hierarchical structure of the

database is rather intricate, and any wrench thrown into the worb by a system crash

could be fatal. One of my design goals was to make the database robust enough to

recover from any amount of internal damage. The simplicity of the internal structure

(i.e., only one type of data: the buffer) brought this goal within reach. The only error

deadly enough to crash the database is an out-of-range pointer. The consistency

- 13-

checker detects and breaks cycles, it sets to NULL any out-of-range pointers, and it

deletes headers to nonexistent data. Garbage collection provides the perfect

opportunity to perform these checks since it is done at boot time as well as

occasionally throughout the execution of the program.

I have tested the consistency checker on numerous occasions with the aid of a

small program which lets me write over the database's disk file. I have even booted

the database from random object files, which I tell the database are its disk files. In

every ease the consistency checker is able to reconstruct a legal database, albeit one

with much information lost.

The garbage collector again earned its salt when I implemented inverse queries. I

did not want to store the inverse mapping tables on disk because updates would

require too much disk i/o. I put a few function calls in my garbage collector, and

now, when the database first comes up, the inverse query tables are built very

economically in memory.

The garbage collector has proven a boon because of its low disk overhead, its

guarantee to find and re-order every unused butter, and its easy modification to

perform new tasks quite different from its original charter. I cannot imagine a more

cost effective piece of code.

9. Zones and Zone Transfer

Zones are useful administrative subdivisions of the Domain Name Space. They

can be dumped, loaded, or transferred to other name servers independently. Whole

zones are only transferred to other name servers at initialization time in the Berkeley

design because incremental updates are used to acquaint the other name servers of

dynamic changes. Zones are implemented in my database as tags to the domain

names. No hierarchical relationship between zones and names is maintained. A zone

transfer requires a linear search of the whole database to be performed. I will attempt

to justify my implementation.

In the first place, zone transfers should be done very infrequently (only at

initialization time) although it is possible for name servers from other parts of the

world to request zone transfers as often as they want. Secondly, since zones separate

different authorities, it is unlikely that there will be very many zones per database.

Hence a single zone will comprise a sizable fraction of the database. On the average,

then, a linear search will only be a few times slower than direct access.

If it turns out that zone transfers are putting a strain on the normal operation of

the name server, I still have one card up my sleeve. When a request for a zone

transfer comes in, the name server could fork off another process to handle the

transfer. Since the database is in core, a fork would give the child process its own

copy of the database to use for the transfer, freeing the name server to continue

answ'ering queries undisturbed.

Alternative implementations of zones include physically separate databases for

each zone (similar to the lSI design) and many different types of logically separate

databases. Physically separate databases within the same process would be rather

hard for my database implementation to handle since the number of separate

databases could change dynamically. A different hash table for each database would

be needed as well as different disk files for each. The complexity and overhead grow

- 14-

with the number or zones.

Logically separate databases seem to be a better choice overall. A secondary

index structure similar to the inverse query table could be used to link zones to names.

Some amount of runtime overhead is then required to update the secondary index as

names are added and deleted. Some kind of mapping is also needed from names to

zones so name look-ups can verify that the name found is in the proper zone of

authority.

When implementing zones in my database, I decided to favor simplicity.

Considering that my design requires no update overhead or secondary tables, it is not

clear that I made such a great sacrifice of speed.

10. Inverse Querie.

Inverse queries take classes, types, and data and return resource records having

those fields. For example, an inverse query could ask for all RRs with data of

"10.0.0.6." Another could ask for all RRs of type "Mailing List" with data

"doctor@miro" - that is, all mailing lists that "doctor@miro" belongs to. Inverse

queries are considered rather rare, and it is optional for name servers following the lSI

specifications to implement them.

Speed is not too important in answering inverse queries, but something better

than a linear search is desirable. Secondary tables can be used to map the inverse

keys to RRs in the database. To reduce overhead on updates, I do not keep a

permanent copy of the inverse query table. Instead, like the free list, it is recreated at

boot time. Additions to the database are noted in the inve~ query table, but no disk

i/o is used to save the changes. Deletions are ignored for simplicity's sake because

there is a many-to-many mapping between inverse keys and domain names. Failed

searches are discovered quickly enough.

My solution is to have one hash table to map data to domain names. Instead of

storing the actual data and domain names, which would just about double the sire of

the database, I store only the hash values of domain names. I do not store the inverse

keys at all. I hash an inverse key to a hash bucket in which are stored the hash values

of all domain names under which the inverse key occurs. If several inverse keys map

to the same hash bucket, a few inappropriate domain names will be examined for their

inverse queries. Extra inverse query hash table buckets are allocated if overflow

occurs. Only integers are stored in the inverse mapping tables so very little space is

needed to implement inverse queries.

Selection on class and type is done as the RRs matching the desired data are

found. An array of RRs meeting all the requirements is returned to the name server.

11. Completion Querle.

·<·. Completion queries are queries which specify a portion of the hierarchical domain

na;n~ of a resource record and desire the name server to discover the rest. An

example of a partial domain name might be "ernie," which the name server would

have to complete to "ernie.berkeley.arpa," say, before it could find any resource

records to return. A knowledge of the hierarchical structure of the Domain Name

Space and a description of the zones which the name server has authority over are

needed to complete partial queries.

- 15-

In general, the name server itself seems to be the appropriate place to implement

completion queries. It has a detailed knowledge of the Domain Name Space and can

apply "higher level" algorithms to find a completion. The database's view of the

world is a bit too "low level" to know what r.ones of authority should be searched and

what kind of pattern matching (first fit, best fit!) is appropriate for completing a

partial domain name. This kind of decision making and domain name manipulation is

better suited to the name server.

Lo and behold, my database uses a "flattened" version of the tree structured

Domain Name Space, and it would be rather difficult to implement completion queries

there regardless of the aesthetics. On the other hand, all the name server has to do to

implement them is to concatenate a few domain names from whatever r.one is

appropriate onto the end of the partial domain name given in the completion query

and then to try looking up the results in the database. This trial and error method

should be as fast as anything the database could do by itself without encumbering it

with more secondary indexes.

12. Overall Advantages of my Design

Speed and Spartan simplicity were two ideals I worked toward. My database has

only one data type, making memory management and data manipulation easier. It

resides in core, making data access as fast and easy as referencing a pointer. Locking

mechanisms and concurrency control are not needed, freeing the one process that uses

the database to run much faster. Moreover, since it is a special purpose database, we

do not have to pay the cost of elaborate query processing, tape backups and other

expensive crash recovery techniques, and intense CPU usage inherent in general

purpose database systems.

My implementation of the Berkeley name server database is a potpourri of

possible schemes. It incorporates the flavors and ingredients of m~ny different designs.

I tried to blend the best qualities of each to create a superbly seasoned stew. I use a

hash table for quick access to a domain name. Yet each name has a hierarchical

structure associated with it for data clustering, implicit data sharing, and navigational

inspection of the data. The database resides in core for speed and simplicity. But a

parallel disk version is kept so that we have a permanent record of updates. Mixed

together, these dissimilar strategies should produce a database more palatable and

satisfying than any one based on a single scheme.

13. Overall Performance

~ described before, all the database has to do for sta::1dard and inverse queries is

compute a hash value, do some string comparisons, and follow a few pointers. For

update queries a little i/o is involved. The database is never CPU bound. A

microcomputer with a winchester disk drive could run this database as fast as (if not

faster than) a main frame computer. If virtual memory is not available, however, only

~_limited amount of data can be stored. ~a rough estimate, given 64K bytes of data

spac~ .. we could store about 200-300 different domain names and resource records

without modifying the program. If program and data have to fit in the same 64K,

then without elbowing out the name server program which accesses the database via

subroutine calls, we still might be able to store 50+ resource records, but it would be

- 16-

necessary to allocate buffers in smaller blocks, one block of 1024 buffers of the current

size probably being larger than all available memory in such a system.

My database program was written in C on a VAX 11/780 running Berkeley

UNIX 4.2 BSD. To measure performance, I ran profiles on two test programs. The

first made only standard queries, i.e. only data retrievals. The average respome time

was 1.67 msec per query, with about 40% of that time being spent in copying the data

found into a return buffer, 40% doing string compariso~, and the rest in menial work.

The second test program repeatedly imerted a long piece of data and then deleted it.

The average respome time for this i/o bound activity was 22.4 msec per query. About

50% of this time was spent writing to disk. The rest was U5ed up in calling fseek(),

saving the new data into buffers, and looking up names in the database. The garbage

collector, which was run 40 times, accounted for only 0.7% of the total execution time.

The test databases were too small to provide a realistic picture of performance,

but the results give a rough indication of the database's speed. The load average on

the machine was moderate, ranging from 5.00 to 10.00 during my tests. Since r.ones

are implemented as tags to domain names, neither the size of the zones nor the

number of zones in the database affects performance. The sheer size of the database

(in bytes) only affects performance by possibly increasing the likelihood of page faults.

The lion's share of queries in a large database probably occurs in only a small portion

of it. Page faults would be minimal in that case. On the other hand, if the database

is large and uniformly accessed, then page faults will be inevitable, and their frequency

will increase with the size of the database.

'Within the hierarchical structure of a resource record, the more classes and types

that exist, the slower an individual RR look-up will be, since class and type fields are

found by a linear search. My test databases were too small to analyze this particular

kind of degradation.

14. Disadvantages

There are tradeoffs to be made in any design. Advantages must be weighed

against disadvantages. To be fair, I should reiterate some of the sore points of my

design.

First of all, there is no concurrent reading or writing of the database. User

queries to the name server might have to wait a long time if the name server is

engaged in lengthy maintenance operatio~, such as transferring r.ones and distributing

incremental updates. However, as was also mentioned before, forking could be used to

ease this problem, allowing the maintenance work to go on in parallel with U8er

queries (forking is rather time co~uming at present in Berkeley UNIX, so the decision

to implement it is not a simple one). In a seme, I have designed a concurrent

database with only one lock: i.e., the whole database. Write access is thus serialized,

but so is read access, unless forking is U5ed to make duplicate copies of the whole

data.Qase. On the other hand, real concurrent databases can lock smaller units than

the whole database, at a substantial cost, to allow both kinds of access to be carried

out in parallel (as much as possible).

Secondly, all data are strings. Numeric data must be converted to ASCII strings

before they can be stored. In the Domain Name Space, these data are classes, types,

and TTLs. Thus we have to pay a small tax to have all of our data fit into the single

- 17-

type of data buJfer5. ~ an aside, having only one data type made the program very

easy to modify. I built and rebuilt the hierarchical RR structure many times, and to

do so I had only to change the look-up and update procedures. All the buJfer handling

routines remained unchanged.

Thirdly, although the one-sired data buffen are very flexible, they do waste

memory through internal fragmentation. If most data are only a few bytes long, my

database will waste about ten times more in storing it. Buffer size could be readjusted

at compile time if need be. For classes, types, and TTLs, the buJfer size is definitely

too large, but a compromise m\15t be struck between these small pieces of data and the

larger domain name and data fields. I mU5t confess that frugal memory \15age was not

one of my design goals. Efficient re-use was. Compared to a static database design,

mine does appear gluttono\15. Having more than one size of data buJfer, in the hopes

of saving a little space here and there, would destroy the simplicity of my design and

would make garbage collection and fragmentation control much more difficult to

perform.

15. Conclusion

Considering the goals I wanted to fulfill, I would say that my database

implementation is a success. It is fast, it has a dean and elegant simplicity about it, it

re-uses memory absolutely, and it is very hard to crash unrecoverably.

All fast as name server databases may be, it is interesting to note that

communication between hosts on the ARPAnet will unavoidably be slower in the

future than it is today. A quick table look-up is all that is required now. With name

servers installed and the ARP Anet broken up into a tree, it will take at least two

message delays jU5t to find out the network address of a particular host. After finding

the desired address, the original message can be sent. In the worst case, it could take

three times as long to send a piece of mail from Berkeley to MIT, say. Name server5

will have to employ a substantial amount of caching to improve performance. In the

absence of such caching, it is a rather academic question to ask how fast the name

server's database is! Network delays are the limiting factor in name server

performance.

Other data besides ARP Anet host addresses can and should be stored in name

servers. Such an eyesore as "/U5r/lib/aliases" better be the first to go. Its format

could easily be converted to RRs. An alias name would be a domain name in our

name space. Members of the alias would be stored beneath it 88 data. There would

be no length limit on names or data in my database if this mapping were UBed. Other

information could be stored beneath the same alias (in a separate class or type), such

88 the home addresses of the members, their phone numbers, or even what the alias is

U5ed for (e.g the "Doctor Who mailing list at Berkeley").
-·
·-~-"'-The "finger" information of each user would be the next logical mass of data to

put into the name server. Some form of security protocol needs to be incorporated

into the name server before any more sensitive data is stored, however. If the

datagram communication between the name server and other processes could be

verified, then a simple access list for each domain name would be a sufficient security

measure in the database. The access list could be stored 88 easily as an additional

class or type under a given domain name. The names of as many authorized users as

- 18-

desired could be kept as pieces of data on this access list. An empty access list could

be considered as having "everybody" on it. ThWI, public bulletin boards could be

easily established.

The Berkeley Name Server Project was developed in parallel with a design team

at USC-lSI working with a different operating Bystem. These two name servers have

Buccessfully communicated with each other over the ARPAnet in test demonstrations.

Together they will occupy a very important position in the future of the ARP Anet

community.

I hope this paper has given the reader 150me insight into the design and

implementation issues unique and not 150 unique to name servers 2.Ild their databases.

\Vhenever I could, I tried to make my solutions to the many problems as novel as

possible.

16. Acknowledgment.

I would like to thank my fellow researchers in the Berkeley Name Server Project

for their cooperation and Bupport during the evolution of my database. They are

Doug Terry, Songnian Zhou, and Mark Painter. Special thanks go to Songnian for his

insight and always helpful comments on my design. Credit for organizing our group

and instructing WI with the utmost care goes to Doug Terry. Professor Domenico

Ferrari was our faculty advisor, and he was always extremely interested and helpful.

Professor Cabrera helped me with a last minute proofreading, and I am grateful for

his help. Thanks also to my many friends who urged me to hurry up and find a

research project last year. Now they can help me look for a job. Warmest affection

to Chris Guthrie, Perry Caro, and Edward Wang.

